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Abstract. We say that a collection of subsets α = [B1, . . . , Bk] of a group G is
a factorization if G = B1 · · ·Bk and each element of G is expressed in a unique
way in this product. By using a special type of mappings between groups A and
B, called free mappings, we exhibit an algorithmic way to construct nontrivial
factorizations of a group G, such that G ∼= A × B. In lemma 3.2 we give a
simple way to construct free mappings. It turns out that this approach has
greater importance when G is an abelian group. We give illustrative examples
of this method in the cases Zp × Zp and Zp × Zq where p and q are different
prime numbers. An interesting connection between free mappings and Rédei’s
theorem, with a number theoretic implication, is given.

1. Introduction

In the mathematical literature one finds two different approaches to defining
group factorizations, depending on whether a group G is abelian or nonabelian.
In the case of an abelian group G, a factorization is a collection of subsets α =
[B1, . . . , Bk] such that that every element g ∈ G has a unique representation g =
s1s2 · · · sk, where si ∈ Bi for 1 ≤ i ≤ k. The subsets Bi, 1 ≤ i ≤ k of G are called
the blocks of the factorization. In the nonabelian case, the term factorization has
frequently been reserved for the case where the blocks are subgroups of the group
G. However, there exists the notion of a logarithmic signature, given in [4] for an
arbitrary group G, that completely agrees with the meaning of factorization in the
abelian case. In this paper, we will use a unified definition of group factorization for
both the abelian and nonabelian case. It should be emphasized that the theory of
group factorizations is much more developed in the abelian case. To the best of our
knowledge, there are just a few papers that treat factorizations of nonabelian groups
where the blocks are considered more generally as sets, rather than subgroups, for
example [4], [5]. On the other hand, much work has been done when the blocks are
subgroups, see for instance [3].

In the abelian case, another term for factorization is tiling. This evokes the
connection to combinatorics and geometry. Indeed, about 1900, H. Minkowski
conjectured that:

Every lattice of a tiling of Rn by unit cubes contains two cubes that meet in an n−1
dimensional face.

In 1938, in his PhD thesis, G. Hajós reformulated Minkowski’s conjecture in terms
of finite abelian groups. That was the beginning of the theory of factorization of
abelian groups in the sense it exists now. The fact that every abelian group is
isomorphic to a factor group of an integral lattice with respect to an integral sub-
lattice, connects the vast field of tilings and abelian groups. In general, factorization
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questions are relevant to the theory of numbers, tilings, packings and covering
problems.

On the other hand, “group factorizations” is a topic that, besides its theoretical
beauty, has practical use in graph theory, coding theory, number theory and modern
cryptography. Group factorizations are the main tool for cryptosystems such as
PGM and MST1. Therefore, finding new ways of factorization is both of great
theoretical and practical interest.

In our paper, we obtain factorizations of groups of the form A × B, where A
and B are groups. Our approach relies on the construction of a pair of mappings
between A and B given in Lemma 3.2. Although there are no restrictions on the
groups A and B, it turns out that there is a greater significance of this approach in
the case where A and B are abelian groups. In section 2. we give an overview of the
existing results that are important for our work. In section 3. the concept of free
mappings is introduced and a basic tool is given for constructing new factorizations.
Section 4. is treating the abelian case, with particular emphasis on the illustrative
cases Zp×Zp and Zp×Zq where p and q are different prime numbers. An interesting
connection between free mappings and Rédei’s theorem, with a number theoretic
implication, is given.

2. Basic definitions and preliminaries

Definition 2.1. We say that a collection of subsets α = [B1, B2, . . . , Bk] is a
factorization of a group G if G = B1B2 · · ·Bk and every g ∈ G has the unique
factorization g = s1s2 · · · sk, si ∈ Bi, 1 ≤ i ≤ k. We call the subsets Bi, the blocks
of factorization α. The factorization is called normalized if each block Bi contains
the identity element. When G is a finite group then we say that the type of α is
(r1, r2, . . . , rk), where |Bi| = ri for 1 ≤ i ≤ k.

A factorization α = [B1, B2, . . . , Bk] of a group G is said to be proper if |Bi| 6= 1
and Bi 6= G, for every i, 1 ≤ i ≤ k. First, we present a result that gives a necessary
and sufficient condition for the collection of sets α = [S, T ] to be a factorization of
group G.

Theorem 2.1. Let S, T be subsets of G. Then α = [S, T ] is a factorization of G if
and only if G = ST and (S−1S) ∩ (TT−1) = {e}.
Proof. Let α = [S, T ] be a factorization of G. From the definition, it follows that
G = ST . Let g ∈ (S−1S) ∩ (TT−1). Then, g = s−1

2 s1 = t2t
−1
1 where s1, s2 ∈ S,

t1, t2 ∈ T . Clearly, s1t1 = s2t2 and then, s1 = s2 and t1 = t2. Hence, g = e.
Conversely, suppose that G = ST and (S−1S)∩ (TT−1) = {e}. We just need to

prove that factorization of an arbitrary element g ∈ G is unique. If g = s1t1 = s2t2
then s−1

2 s1 = t2t
−1
1 . Since (S−1S)∩ (TT−1) = {e}, then it follows s−1

2 s1 = t2t
−1
1 =

e, i.e. s1 = s2 and t1 = t2, what makes factorization of g unique. ¤

The following, well known lemma gives an algorithmic procedure for constructing
a factorization of given group G.

Lemma 2.2. Let {e} = G0 ≤ G1 ≤ · · · ≤ Gs = G be a chain of subgroups and
let Bi be a complete set of right coset representatives of Gi−1 in Gi, for 1 ≤ i ≤ s.
Then, α = [B1, . . . , Bs] is a factorization of G.
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Proof. Let g ∈ G be an arbitrary element. There exists a unique bs ∈ Bs such
that g ∈ Gs−1bs. Then gb−1

s ∈ Gs−1. Similarly, there exists a unique bs−1 ∈
Bs−1 such that gb−1

s ∈ Gs−2bs−1 and consequently gb−1
s b−1

s−1 ∈ Gs−2. Continuing
this way, we obtain a sequence b1, b2, . . . , bs, unique for a given g ∈ G such that
gb−1

s b−1
s−1 · · · b−1

1 ∈ G0. Therefore, g = b1 · · · bs and bi ∈ Bi for 1 ≤ i ≤ s. Thus, α
is a factorization of G. ¤

This specific type of group factorization α = [B1, . . . , Bs] of a group G, derived
from the chain of groups

{e} = G0 ≤ G1 ≤ · · · ≤ Gs = G

where Bi is a set of complete representatives of Gi−1 in Gi is called a transversal
factorization. Denote by T (G) be the collection of transversal factorizations of
G. Note that whenever a group G has a proper subgroup, there exists a proper
factorization.

Example 2.3. In particular, let G be a permutation group acting on the set
Ω = {1, 2, . . . , n}. Consider the sequence of subgroups Gi, such that Gi fixes
pointwise the letters from the set {1, 2, . . . , i}. Then

G ≥ G1 ≥ G2 ≥ · · · ≥ Gn ≥ {e}.
Therefore, every permutation group has a transversal factorization.

Let R(G) be the collection of factorizations of G where at least one block is a
nontrivial subgroup of G.

It is of particular interest to explore conditions under which every factorization of a
group G belongs to T (G) or R(G). In general, there are stronger results regarding
this problem when G is an abelian group. We include one of the milestones in the
theory of factorizations of abelian groups, Rédei’s theorem.

Theorem 2.2. Let α = [B1, B2, . . . , Bk] be a normalized factorization of the finite
abelian group G such that |Bi| = pi is a prime for each i, 1 ≤ i ≤ k. Then at least
one of the blocks B1, B2, . . . , Bk is a subgroup of G.

The following lemma provides a relation between T (G) and R(G) under certain
conditions.

Lemma 2.4. Let α = [B1, B2, . . . , Bk] be a normalized factorization of the finite
abelian group G such that |Bi| = pi is a prime for each i, 1 ≤ i ≤ k. Then
α ∈ T (G).

Proof. We give a proof by a repetitive use of Rédei’s theorem. It is clear that the
claim holds whenever the size of G is a prime number. Suppose now that |G| is
not prime. According to Rédei’s theorem, there is at least one block of α that is a
subgroup of G, say B1. It is not hard to see that β = [C2, . . . , Ck] is a factorization
of G/B1, where Ci = BiB1/B1. Since α is normalized it follows that Bi∩Bj = {e}
for i 6= j. Therefore, it must be that |Ci| = |Bi| and then, the sizes of blocks in
β are prime numbers. Thus, at least one of the Ci’s must be a subgroup, say C2.
Since B2B1/B1 is a subgroup of G/B1 then B1B2 is a subgroup of G. Continuing
this process, we have that

{e} ≤ B1 ≤ B1B2 ≤ · · · ≤ B1B2 · · ·Bk = G
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is an ascending chain of subgroups and hence α is a transversal factorization. ¤

There are examples of groups, as given in [5], for which all factorizations belong
to T (G). For example, every factorization of the dihedral group of order 8 is
transversal, while there exists a factorization of alternating group A5 that is not
transversal.

2.1. Transformations on factorization.
Here, we will assume that α = [B1, B2, . . . , Bk] is a factorization of a group G. By
applying certain transformations on α, new factorizations can be obtained. We list
some of them.

Fusing blocks We can create a new factorization β by fusing two consecutive
blocks of α say Bi and Bi+1 to a single block C = {xy | x ∈ Bi, y ∈ Bi+1}.
Thus, if g = s1s2 · · · sisi+1 · · · sk is the factorization of g with respect to α, then
the factorization of g with respect to β will be g = s1s2 · · · si−1tsi+2 · · · sk, where
t = sisi+1. In this case, we say that α is a refinement of β.

Sandwiching Let g1, g2, . . . , gk+1 be an arbitrary sequence of elements in G. Then
β = [C1, C2, . . . , Ck] is a factorization of G, where Ci = g−1

i Bigi+1 for 1 ≤ i ≤ k.
Note that when G is an abelian group, then β = [B1, B2, . . . , gBi, . . . , Bk] is a
factorization for any g ∈ G. Consequently, γ = [C1, C2, . . . , Ck] is a factorization
of G, where Ci = Bigi for gi ∈ G, 1 ≤ i ≤ k.

Exponentiation Under certain conditions, raising a block of α elementwise to a
fixed power induces a new factorization.

In general, it holds that β = [B−1
k , B−1

k−1, . . . , B
−1
1 ] is a factorization of group

G. In this case we say that β is the inverse factorization of α, denoted by
β = α−1. Let g−1 = s1s2 · · · sk be the factorization of g−1 with respect to α.
Thus, g = s−1

k s−1
k−1 · · · s−1

1 is the factorization of g with respect to β. As it has
been shown in [6], when G is a finite, abelian group, then γ = [C1, C2, . . . , Ck]
is a factorization of G, where Ci = Bmi

i , and mi are integer numbers such that
gcd(mi, |Bi|) = 1 for 1 ≤ i ≤ k. Note that α−1 ∈ T (G) whenever α ∈ T (G).

Automorphism action Let φ be an automorphism of group G. Then, it follows
that β = [C1, C2, . . . , Ck] is a factorization of G, where Ci = φ(Bi) for 1 ≤ i ≤ k.
Let g be an arbitrary element of G. Let φ−1(g) = b1b2 · · · bk be the unique factor-
ization of φ−1(g) with respect to α. By applying the automorphism φ to the both
sides we have that g = φ(b1)φ(b2) · · ·φ(bk). Suppose that g = φ(b′1)φ(b′2) · · ·φ(b′k),
where b′i ∈ Bi, 1 ≤ i ≤ k. Then φ(b1b2 · · · bk) = φ(b′1b

′
2 · · · b′k) and therefore

b1b2 · · · bk = b′1b
′
2 · · · b′k. We conclude that bi = b′i, 1 ≤ i ≤ k and accordingly

φ(bi) = φ(b′i), 1 ≤ i ≤ k.

3. Free mappings and factorizations of A×B

In this section, A and B will denote groups. By introducing a certain class of
mappings between A and B and by giving an effective way for their construction,
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we obtain factorizations of A × B. Although this could be applied to nonabelian
groups A and B, this approach has greater significance for abelian groups.

For the rest of the paper, the term factorization will strictly mean proper fac-
torization.

Definition 3.1. Let f : A → B and g : B → A be mappings between groups A
and B. Two pairs (a1, b1), (a2, b2), where a1, a2 ∈ A, b1, b2 ∈ B, are said to be a
clip of f and g if it holds

f(a1)−1f(a2) = b2b
−1
1

g(b2)g(b1)−1 = a−1
1 a2.

We say that a clip (a1, b1), (a2, b2) is strong if a1 6= a2 or b1 6= b2. In fact, it is clear
that if (a1, b1), (a2, b2) is a strong clip, then a1 6= a2 and b1 6= b2. Two mappings
f, g are chained if there exists a strong clip of f and g, otherwise we say that they
are free.

The following theorem provides a way for constructing a factorization of A×B for
given free mappings f , g.

Theorem 3.1. Let f : A → B and g : B → A be mappings where A, B are finite
groups. Let S = {(a, f(a))| a ∈ A} and T = {(g(b), b)| b ∈ B}. Then, α = [S, T ] is
a factorization of A×B if and only if f , g are free.

Proof. Suppose that α is a factorization of A × B. Let a1, a2 ∈ A and b1, b2 ∈ B
be such that

f(a1)−1f(a2) = b2b
−1
1

g(b2)g(b1)−1 = a−1
1 a2.

Equivalently, we have that

(a1, f(a1))(g(b2), b2) = (a2, f(a2))(g(b1), b1).

Hence, (a1, f(a1)) = (a2, f(a2)) and (g(b2), b2) = (g(b1), b1). We conclude that
a1 = a2 and b1 = b2, so f, g are free.

Conversely, suppose that f and g are free mappings. It is easy to see that
(S−1S) ∩ (TT−1) = {(e, e)}. Since A and B are finite groups, it follows that
|ST | = |S||T | = |A||B| = |A × B|. Therefore, ST = A × B and according to
Theorem 2.1, α is a factorization of A×B. ¤

Let A and B be groups and H be a subgroup of A. We say that f : A → B is
constant on the left cosets of H if |f(aH)| = 1 for every a ∈ A. In the following
lemma, we give a technique for constructing free mappings.

Lemma 3.2. Let A and B be groups and H be a subgroup of A. Let f : A → B
be constant on the left cosets of H and g : B → A such that Im(g) ⊆ H. Then the
mappings f, g are free.

Proof. Suppose that there exists a strong clip (a1, b1), (a2, b2) of f and g. Then,
a−1
1 a2 = g(b2)g(b1)−1 ∈ H. This means that a1, a2 are in the same left coset of H.

Hence, f(a1)−1f(a2) = e and b2b
−1
1 = e, implying b1 = b2. Consequently, we have

a1 = a2 which contradicts the assumption that (a1, b1), (a2, b2) is a strong clip of
f and g. ¤
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Clearly, the previous result holds if we take right instead of left cosets. Note
that if H = {e} then Im(g) = {e}. Hence, f could be any mapping from A to B.
In order to construct a proper factorization using the previous lemma, either A or
B must have a nontrivial subgroup.

The following example is a simple illustration of how to use free mappings to
obtain a factorization of A×B.

Example 3.3. Consider the group

G = 〈a, b, c | a2 = b3 = c3 = e, ba = b, ca = c−1, bc = cb〉.
This is a nonabelian group of order 18 and has a representation on 6 points. We
can identify a = (4 5), b = (1 2 3) and c = (4 5 6). Let A, B be the pointwise
stabilizers of the letters {1, 2, 3}, {4, 5, 6} respectively. It is easy to see that A ∼= S3

while B ∼= Z3. Since A and B are both normal in G and A ∩ B = {e} it follows
that G ∼= S3 × Z3. Therefore, we can identify elements of G as ordered pairs.

First, we apply the technique given in Lemma 3.2 in order to find a pair of free
mappings. We choose a subgroup H of S3, say H = {id , (1 2 3), (1 3 2)}. Then,
considering the cosets H and H(1 2), we can construct a pair of free mappings f, g
in the following way:

f : S3 → Z3 , f(x) =

{
0, if x ∈ H;
2, if x ∈ H(1 2).

g : Z3 → S3 , g(0) = id , g(1) = (1 3 2), g(2) = (1 3 2).
The pair of free mappings f, g provides a factorization S3 × Z3 = B1 ·B2, where
B1 = {(id, 0), ((1 2 3), 0), ((1 3 2), 0), ((1 2), 2), ((1 3), 2), ((2 3), 2)},
B2 = {(id, 0), ((1 3 2), 1)), ((1 3 2), 2)}. Note that this is a nontrivial factorization
where the blocks B1, B2 are neither groups nor cosets of groups.

4. The abelian case

In this section, we assume that A and B are abelian groups. Let f : A → B
and g : B → A be a pair of mappings. We define a relation Rf,g on A × B as
(a1, b1)Rf,g(a2, b2) if and only if (a1, b1), (a2, b2) is a clip of f, g. It turns out that
Rf,g is an equivalence relation.

By using free mappings, we will characterize factorizations of the groups Zp×Zp

and Zp × Zq, where p and q are two different primes. In our original approach,
we show that all factorizations of Zp × Zq must be of the type we introduced in
Theorem 3.1. At the end we show an interesting application of Rédei’s theorem
with a number theoretic implication.

Theorem 4.1. Let f : A → B and g : B → A be mappings between abelian groups
A and B. Then, the relation Rf,g is an equivalence relation.

Proof. Rf,g is reflexive. Let (s, t) be an arbitrary pair from A×B. From
f(s)f(s)−1 = tt−1 and g(t)g(t)−1 = ss−1, it follows that (s, t)Rf,g(s, t).

Rf,g is symmetric. Let (s, t)Rf,g(u,w). From

f(s)f(u)−1 = tw−1, g(t)g(w)−1 = su−1

it follows that
f(u)f(s)−1 = wt−1, g(w)g(t)−1 = us−1
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which means (u,w)Rf,g(s, t).

Rf,g is transitive. Let (s, t)Rf,g(u,w) and (u,w)Rf,g(z, r). It follows that

f(s)f(u)−1 = tw−1, g(t)g(w)−1 = su−1

f(u)f(z)−1 = wr−1, g(w)g(r)−1 = uz−1.

By multiplying left and right hand sides of the previous equalities, we obtain

f(s)f(z)−1 = tr−1, g(t)g(r)−1 = sz−1

which means (s, t)Rf,g(z, r). ¤

An immediate consequence of the previous theorem is the following

Corollary 4.1. Let f : A → B and g : B → A be mappings where A, B are abelian
groups. Let S = {(a, f(a))| a ∈ A}, T = {(g(b), b)| b ∈ B}. Then, α = [S, T ] is a
factorization of A × B if and only if every equivalence class of Rf,g contains just
one element.

4.1. A geometric interpretation of the factorizations of Zp × Zp.

An interesting illustration of our approach is given for the abelian group Zp×Zp. At
the end of this section, we will be able to characterize the factorizations of Zp×Zp

revealing their connection to free mappings.
The graph of a function f : A → B is the collection of all ordered pairs

(x, f(x)), x ∈ A. We say that a function f is normalized if f(0) = 0.
First, suppose that f, g is a pair of linear mappings. Let `1, `2 be two non-parallel

lines
`1 : a1x + b1y = 0, `2 : a2x + b2y = 0,

where a1, a2, b1, b2 ∈ Zp. Clearly, the lines `1 and `2 generate the affine plane
AG(2, p) ∼= Zp × Zp. Without loss of generality, we can assume that a2 and b1 are
non-zero elements and then there exist m1,m2 ∈ Zp such that

`1 : y = m1x, `2 : x = m2y.

It is easy to check that two mappings

f : Zp → Zp ; g : Zp → Zp

x 7→ m1x y 7→ m2y

are free, provided that the lines `1 and `2 are not parallel, i.e. m1 ·m2 6= 1. Thus,
we can state the following lemma.

Lemma 4.1. Let f, g be the mappings defined as

f : Zp → Zp ; g : Zp → Zp

x 7→ m1x y 7→ m2y

where m1,m2 ∈ Zp and m1 ·m2 6= 1. Then, f and g are free and α = [B1, B2] is a
normalized factorization of Zp × Zp where

B1 = {(x,m1x) | x ∈ Zp}, B2 = {(m2y, y) | y ∈ Zp}.
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By Lemma 4.1, given a pair of non-parallel lines in the affine plane AG(2, p),
we can construct a pair of free mappings and hence a factorization of the group
Zp × Zp. Conversely, let us consider a group G of type (p, p) and a normalized
factorization α = [B1, B2]. By Rédei’s Theorem 2.2, either B1 or B2 is a subgroup
of G, and then that block can be seen as a line in the affine plane AG(2, p). Thus,
we can state the following lemma.

Lemma 4.2. Let G be an abelian group of type (p, p). If α = [B1, B2] is a normal-
ized factorization of G then, either B1 or B2 is a line of the affine plane AG(2, p).

Note that if α = [B1, B2] is a factorization of abelian group of type (p, p) then
not necessarily both B1 and B2 are lines. Let us consider the following example.

Example 4.3. Let G = Z3 × Z3 and

B1 = {(0, 0), (1, 1), (2, 2)}, B2 = {(0, 0), (1, 0), (1, 2)}.
Then, α = [B1, B2] is a factorization of G. Clearly, even if B1 is a line, factorization
α is not of the type given in Theorem 3.1. However, we will see that free mappings
have an important role that will lead us to a characterization of factorizations of
abelian groups of the type (p, p).

By Lemma 4.2, at least one of the blocks of a factorization of Zp × Zp is a line.
The case in which the blocks are lines has been discussed in Lemma 4.1. The
following lemma provides a characterization in the general case.

Lemma 4.4. Let A be a subset of Zp×Zp and g : Zp → Zp defined as g(y) = my.
Let B = {(my, y) | x ∈ Zp}. Then, α = [A,B] is a factorization of Zp×Zp provided
that |A| = p and

m /∈
{

x1 − x2

y1 − y2

∣∣∣ (x1, y1), (x2, y2) ∈ A, y1 6= y2

}
.

Proof. Suppose that α = [A,B] is not a factorization of Zp ×Zp. Then, there exist
(x1, y1), (x2, y2) ∈ A, (x1, y1) 6= (x2, y2), and y1, y2 ∈ Zp, y1 6= y2, such that

(x1, y1) + (my1, y1) = (x2, y2) + (my2, y2).

Note that y1 6= y2 and

m(y1 − y2) = x2 − x1, y1 − y2 = y2 − y1.

Hence,

m =
x1 − x2

y1 − y2

which contradicts the given assumption. ¤

Theorem 4.2. Let f be a mapping f : Zp → Zp and g : Zp → Zp defined as
g(y) = my, where m 6= 0. The mappings f, g are free, provided that

m−1 /∈
{

f(x1)− f(x2)
x1 − x2

| x1, x2 ∈ Zp, x1 6= x2

}
.

Furthermore, if g(x) = 0, then f, g are free mappings for every f .

Proof. This follows from the previous lemma with A = {(x, f(x)) | x ∈ Zp}. ¤
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Let us consider Example 4.3 and the automorphism σ1 of Z3×Z3 defined by the

matrix M1 =
(

1 −1
0 1

)
. The automorphism action of σ1 on the factorization α

yields to factorization: σ1(α) = [σ1(B1), σ1(B2)], where

σ1(B1) = {(0, 0), (0, 1), (0, 2)}, σ1(B2) = {(0, 0), (1, 0), (2, 2)}.
We obtained a new factorization where one block is the vertical line g : x = 0 and

the other block is the graph of the function f :
(

0 1 2
0 0 2

)
.

In the following theorem we generalize this approach.

Theorem 4.3. Let G be a group of type (p, p) and α = [B1, B2] a normalized
factorization of G. Then, there exists σ ∈ SL(2, p) such that one block of σ(α) is
the vertical line and the other block is the graph of a normalized function.

Proof. Without loss of generality, we can assume that the block B1 is a line `.
Suppose that ` : x = 0. We prove that in this case, B2 must be a graph of a
function. If B2 is not graph of a function then there exist x, y1, y2 ∈ Zp, y1 6= y2

such that (x, y1) and (x, y2) are in B2. Then we have

(0, y2 − y1) + (x, y2) = (0, 0) + (x, y1)

what contradicts the fact that α is a factorization.
Consider the case when ` : y = 0. By taking automorphism action of

σ =
(

0 −1
1 0

)

on the factorization α we obtain a new factorization where the first block σ(B1) is
the line x = 0. According to the argument given above, it follows that σ(B2) must
be the graph of a normalized function.
Finally, let us suppose that ` : y = mx, m 6= 0. Then, we can define

σ =
(

m −1
0 1/m

)
.

It is clear that σ ∈ SL(2, p) and σ(B1) is the line x = 0. Hence, σ(B2) must be the
graph of a normalized function. ¤

Theorem 4.3 characterizes the factorizations of the group Zp×Zp in a geometric
fashion since it shows that every normalized factorization of Zp × Zp is a rotation
of a factorization α = [B1, B2] where B1 corresponds to the vertical line x = 0
and B2 is the graph of a function from Zp to Zp. Considering two factorizations
α = [B1, B2] and α′ = [B′

1, B
′
2] of Zp × Zp to be equal if {B1, B2} = {B′

1, B
′
2}, it is

not hard to see that the number of normalized factorizations of Zp × Zp is

(p + 1)pp−1 −
(

p + 1
2

)
=

p(p + 1)
2

(2pp−2 − 1).

4.2. Factorization of Zpq.

The particular relevance of free mappings appears in the factorizations of Zpq.
Further on, p and q will be different prime numbers. It will be shown that ev-
ery factorization of Zpq induces a pair of free mappings between Zp and Zq. We
will present an interesting application of circulant matrices in the factorization of
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abelian groups. We will show that under certain conditions each pair of mappings
f : Zp → Zq and g : Zq → Zp must be chained.

Definition 4.5. A set of integers that includes one and only one member of each
number class modulo n is called a complete residue system modulo n.

Theorem 4.4. Let p be a prime number and cp, cp−1, . . . , c1 integers. Let

V =




cp cp−1 . . . c1

c1 cp . . . c2

...
...

...
...

cp−1 cp−2 . . . cp




be a circulant matrix, denoted by V = circ(cp, cp−1, . . . , c1). Then det(V ) = 0 if
and only if either

∑p
i=1 ci = 0 or all the ci are equal.

Proof. If all ci are equal then clearly det(V ) = 0. If
∑p

i=1 ci = 0, then by adding
all rows of V together, zero row is obtained and therefore det(V ) = 0.

Conversely, suppose that det(V ) = 0. We know that at least one of the eigen-
values of circulant matrix is equal to zero. The eigenvalues of the circulant matrix
V are

λl = P (e
2πi

p l), l = 0, 1, . . . , p− 1
where

P (x) =
p−1∑

i=0

cix
i.

So, there exists l such that e
2πi

p l is a root of the polynomial P (x). Consider two
cases. If l = 0 then

p−1∑

i=0

ci = 0.

If l 6= 0 then e
2πi

p l is a primitive p-th root of unity. In this case, the minimal
polynomial of e

2πi
p l over the integers is cyclotomic polynomial

Q(x) =
p−1∑

i=0

xi.

Therefore P (x) is a constant multiple of Q(x). Consequently, all ci’s are equal. ¤
Definition 4.6. Let U and W be multisets that belong to a common additive
group G. We define U + W to be the multiset that contains all elements of the
form u + w where u ∈ U and w ∈ W .

The following result is interesting by itself, disregarding its implication to fac-
torization of abelian groups. Namely, it provides a condition under which the sum
of two multisets of integer numbers, where one of them has prime number size p, is
uniformly distributed among the residue classes modulo p.

Lemma 4.7. Let U and W be two multisets of positive integers. Let |U | = p and
|W | = n, where p is a prime number and gcd(p, n) = 1. Then, a multiset U + W
contains exactly n numbers from each class modulo p if and only if U is a complete
residue system modulo p.
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Proof. Let us suppose that U +W contains n elements from each residue class mod-
ulo p. Let ci, bi represents the number of elements from U , W that are congruent
to i modulo p respectively, where 1 ≤ i ≤ p. Note that

p∑

i=1

ci = p and
p∑

i=1

bi = n.

Consider the multiset U + W . Let mi denotes the number of elements of U + W
that are congruent to i modulo p. Clearly,

m1 = b1cp + b2cp−1 + . . . + bpc1

m2 = b1c1 + b2cp + . . . + bpc2

...
...

...
...

mp = b1cp−1 + b2cp−2 + . . . + bpcp.

If m1 = m2 = · · · = mp = n then the previous system can be written in the matrix
form 



cp cp−1 . . . c1

c1 cp . . . c2

...
...

...
...

cp−1 cp−2 . . . cp







b1

b2

...
bp


 =




n
n
...
n




If C = circ(cp, cp−1, . . . , c1), b = (b1, b2, . . . , bp)t and d = (n, n, . . . , n)t, then the
previous system is

Cb = d.

Let us suppose that det(C) 6= 0. Then, the system has a unique solution, given by

b1 = b2 = · · · = bp =
n

p
.

Since bi are positive integers and gcd(p, n) = 1, this case is not possible. Therefore,
it must be that det(C) = 0. According to Theorem 4.4, it holds

c1 = c2 = · · · = cp = 1.

Thus, U is a complete system of residue classes modulo p.
Conversely, let us suppose that U is a complete system of residue classes modulo

p. Consider U + w for w ∈ W . It follows that U + w is a complete residue system
modulo p as well. Therefore, the multiset U+W contains every residue class modulo
p exactly |W | = n times. ¤

Although the following result is very special case of the Theorem 1. [7], presented
proof is based on new method, using circulant matrices and cyclotomic polynomials.

Lemma 4.8. Let α = [B1, B2] be a factorization of Zpn. Let |B1| = p and
|B2| = n, where p is a prime number such that gcd(p, n) = 1. Then B1 is a
complete system of residue classes modulo p.

Proof. Let m = pn. Since gcd(p, n) = 1, there is the natural isomorphism π between
Zm and the group of ordered pairs

Zp × Zn = {(a, b)| 0 ≤ a ≤ p− 1, 0 ≤ b ≤ n− 1}
given by

π(x) = (x mod p, x mod n).
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Therefore, α is a factorization of Zm if and only if β = [π(B1), π(B2)] is a factor-
ization of Zp × Zn. Note that there are exactly n pairs from Zp × Zn that have a
particular a on the first coordinate, and there are exactly p pairs having a particular
b on the second coordinate.
Let U , W be a multiset of the first coordinates of the set π(B1), π(B2) respectively.
Note that elements in U and W are from Zp, where |U | = p and |W | = n. Consider
the multiset U + W . If β is a factorization of Zp × Zn, then U + W must contain
every residue class modulo p exactly n times. According to Lemma 4.7, U must
contain all residue classes modulo p. Therefore, B1 is a complete system of residue
classes modulo p. ¤
Corollary 4.2. Let α = [B1, B2] be a factorization of Zpq where p and q are two
different prime numbers. Let |B1| = p and |B2| = q. Then B1, B2 are complete
residue systems modulo p, q respectively.

According to the previous corollary, it is clear that every factorization of Zp×Zq

must be of the form α = [B1, B2] where B1 = {(a, f(a))| 0 ≤ a ≤ p − 1} and
B2 = {(g(b), b)| 0 ≤ b ≤ q − 1}. Consequently, using Theorem 3.1 we have the
following result.

Corollary 4.3. α = [B1, B2] is a factorization of Zp × Zq if and only if

B1 = {(a, f(a))| 0 ≤ a ≤ p− 1}, B2 = {(g(b), b)| 0 ≤ b ≤ q − 1},
p and q different primes and f , g are free mappings.

Clearly, every factorization can be easily normalized, simply by translation for
an appropriate element. According to the previous corollary and Rédei’s theorem,
one block of a normalized factorization of Zp×Zq, say B1 must be of the form B1 =
{(a, 0))| 0 ≤ a ≤ p− 1}. It means that f(a) = 0 for every a ∈ Zp. It implies that g
could be any mapping from Zq to Zp, since a pair f, g is always free if one of them
is zero mapping. Similarly as in the case of Zp×Zp, we consider two factorizations
α = [B1, B2] and α′ = [B′

1, B
′
2] of Zp×Zq to be equal if {B1, B2} = {B′

1, B
′
2}. From

here, it follows easily that total number of normalized factorizations of Zp × Zq is
equal to pq−1 + qp−1 − 1.

Example 4.9. Consider the mappings f : Z3 → Z4, g : Z4 → Z3, defined as

f =
(

0 1 2
0 2 0

)
g =

(
0 1 2 3
0 1 0 1

)
.

It is not hard to see that f, g are free. Therefore, it is possible to factorize Z3 ×Z4

in the way shown in Theorem 3.1. Thus, we obtain α = [B1, B2], a factorization of
Z12, where B1 = {0, 8, 10}, B2 = {0, 1, 6, 7}.

The following theorem explains that under certain conditions, we always have a
strong clip of mappings f : Zp → Zq, g : Zq → Zp.

Theorem 4.5. Let f : Zp → Zq and g : Zq → Zp be mappings such that |Im(f)| >
1, |Im(g)| > 1, f(0) = 0, g(0) = 0. Then f and g are chained whenever p and q are
different primes.

Proof. Let us suppose that f and g are free. By Theorem 3.1, α = [B1, B2] is a
factorization of Zp × Zq where

B1 = {(a, f(a))| 0 ≤ a ≤ p− 1}, B2 = {(g(b), b)| 0 ≤ b ≤ q − 1}.
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Since f(0) = 0 and g(0) = 0, it is a normalized factorization. By Rédei’s theorem,
either B1 or B2 is a group. Therefore, either f(a) = 0, a ∈ Zp or g(b) = 0, b ∈ Zq.
However, this contradicts the assumption that |Im(f)| > 1, |Im(g)| > 1. Therefore,
f and g must be chained. ¤

Previous theorem says that under the conditions stated above, there always exist
numbers i1, i2 ∈ Zp and j1, j2 ∈ Zq, i1 6= i2, j1 6= j2 such that

f(i1)− f(i2) ≡ j1 − j2 (mod q)

g(j1)− f(j2) ≡ i1 − i2 (mod p)
when p and q are different primes. In other words, it says that every two mappings
f : Zp → Zq and g : Zq → Zp are chained, unless one of them is a constant mapping.
The following example shows that the assumption for p and q to be different primes
can not be dropped.

Example 4.10. Consider mappings f : Z3 → Z3, g : Z3 → Z3, defined as

f =
(

0 1 2
0 1 2

)
g =

(
0 1 2
0 2 1

)
.

As we see, |Im(f)| > 1, |Im(g)| > 1, f(0) = 0, g(0) = 0. However, f, g are not
chained. Therefore, f and g are free and α = [B1, B2] is a factorization of Z3×Z3,
where

B1 = {(0, 0), (1, 1), (2, 2)}, B2 = {(0, 0), (1, 2), (2, 1)}.

5. Conclusions

In this paper we studied group factorizations of G using free mappings, where
G ∼= A × B. Lemma 3.2 provides an effective way for constructing pairs of free
mappings. Consequently, using Theorem 3.1, new factorizations of G can be con-
structed. It should be emphasized that there are no further restrictions on groups
A and B except that they have to be finite. It could be interesting exploring which
conditions infinite groups A and B should satisfy to have factorizations using free
mappings.

A special attention was given to the finite, abelian case. In particular, we were
able to characterize all factorizations of Zp × Zp and Zp × Zq using free mappings.
We showed the use of circulant matrices for studying group factorizations and the
potential significance of this approach could be an interesting direction for the
further research.

Also, it has been shown an interesting number theoretic consequence of Rédei’s
Theorem 2.2 on the pair of mappings f : Zp → Zq, g : Zq → Zp, when neither
f nor g is a constant mapping. The problem we address for the further research
is exploring some other methods for constructing free mappings between groups A
and B.

As we already stated, group factorizations have relation to other branches of
mathematics, like coding theory and cryptography. Finally, it would be worth of
examining what role the concept of free mappings has in the related scientific areas.
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